

​
Security Assessment

Final Report

​

Fragmetric restaking v0.6.3

May - July 2025

Prepared for Fragmetric

 ​ ​ ​ ​ ​ ​ ​

Table of content
Project Summary...3

Project Scope.. 3
Project Overview... 3

Protocol Overview... 3
Findings Summary.. 5
Severity Matrix...5

Detailed Findings.. 6
Medium Severity Issues..8
M-01 Array index mismatch causes withdrawal processing panic.. 8
M-02 The OrcaDEXLiquidityPool pricing source is vulnerable to price manipulation......................................9
M-03 Incorrect assert in set_supported_token_redelegating_amount allows for wrong redelegating amount
setting.. 11
M-04 Missing validation allows same token swap strategy registration leading to DoS...............................12
Low Severity Issues.. 13
L-01 Inconsistent command discriminants and module file numbering...13
L-02 Users can lose rewards when settlement blocks exceed maximum capacity.......................................14
L-03 Token swap strategies cannot be updated or removed...15
L-04 Missing mint account validation for distributing reward token.. 16
L-05 Missing account ownership validation for vault operator delegation... 17
Informational Severity Issues.. 19
I-01. Undocumented magic values for minimum operation thresholds... 19
I-02. Unused command imports in DenormalizeNT module..20
I-03. Hardcoded seeds string should use SPL library constant for extra account metas.............................. 21
I-04. Unused desired_account_size parameter for user_create_fund_account_idempotent........................ 22
I-05. Inconsistent event emission across the codebase..23
I-06. Unimplemented vault types create silent failures..24
I-07. Insufficient vector capacity reservation in resolve_underlying_assets..25
I-08. Redundant error handling in ClaimUnstakedSOLCommand::execute_prepare................................... 26
I-09. Typos in variable and function names...27

Disclaimer.. 28
About Certora.. 28

​ 2

 ​ ​ ​ ​ ​ ​ ​

Project Summary
Project Scope

Project Name Repository (link) Latest Commit Hash Platform

Fragmetric
restaking v0.6.3

/fragmetric-labs/fragmetric-contracts 581422f Solana

Project Overview

This document describes the verification of the Fragmetric staking program using manual code
review. The work was undertaken from May 22nd 2025 to July 18th 2025..

The following files are considered in scope for this review:

●​ All files under /programs/restaking/src

The team performed a manual audit of all the contracts. During manual audit, the Certora team
discovered issues in the code, as listed in the following pages.

Protocol Overview

The Fragmetric program is an on-chain protocol for the Solana blockchain that helps users and
fund managers manage staking, restaking, liquidity, and fund operations across multiple
supported protocols. It makes it easier to move and allocate assets between different staking
pools and vaults, so users can earn rewards and manage risk without having to interact with each
protocol separately.

Fragmetric uses a command-based workflow, where each operation—such as staking, unstaking,
restaking, delegating, withdrawing, or harvesting rewards—is handled as a series of commands.
Each command represents a specific step or action, and the workflow ensures that these steps
are executed in order, can be paused and resumed, and that progress is tracked throughout the
process.

​ 3

https://github.com/fragmetric-labs/fragmetric-contracts
https://github.com/fragmetric-labs/fragmetric-contracts/commit/581422f0aeafd991a4ee4b06d4dc66f6d8c753f1

 ​ ​ ​ ​ ​ ​ ​

The program uses token2022 hooks to track rewards. By using these hooks, Fragmetric can
monitor and account for rewards earned through staking and restaking activities, ensuring fair
and correct accurate reward distribution.​
​
Fragmetric uses restaking to optimize rewards by reallocating assets that have already been
staked in one protocol into another staking or restaking vault. This approach enables more
efficient use of assets and the potential for higher returns. Currently, restaking in Fragmetric is
only supported through Jito, so only Jito restaking vaults are used for this process.

Fragmetric supports a variety of token types and vaults, including Marinade, SPL Stake Pool,
Sanctum, Jito Restaking Vaults, and its own internal vaults. The protocol keeps careful track of all
assets, including how much is reserved, pending, or available for each token and SOL. It also
manages fees, making sure that any protocol or external fees are applied correctly. ​
Fragmetric is designed to batch actions and allow partial execution, so large operations can be
split up and completed over several transactions.

Special attention was given during the audit to the following:

●​ Command-based workflow and execution of staking, unstaking, restaking, delegation,
withdrawal, and reward harvesting operations.

●​ State machine logic for command sequencing, step tracking, and safe resumption of
interrupted processes.

●​ Account validation, asset tracking, and prevention of out-of-bounds or misaligned access.
●​ Integration and handling of multiple token pricing sources, including supported,

unsupported, and internal types.
●​ Use of token2022 hooks for tracking and accounting of staking and restaking rewards.
●​ Calculation and application of protocol and external fees, including rounding and precision

handling.
●​ Batch processing, partial execution, and logic for resuming operations after transaction or

compute limits are reached.

​ 4

 ​ ​ ​ ​ ​ ​ ​

Findings Summary

The table below summarizes the findings of the review, including type and severity details.

Severity Discovered Confirmed Fixed

Critical 0 0 0

High 0 0 0

Medium 4 4 4

Low 5 5 4

Informational 9 9 3

Total 18 18 11

Severity Matrix

Impact

Critical Medium Medium/High High Critical

High Low/Medium Medium Medium/High High

Medium Low Low/Medium Medium Medium/High

Low Informational Low Low/Medium Medium

 Rare Unlikely Likely Very Likely

 Likelihood

​ 5

 ​ ​ ​ ​ ​ ​ ​

Detailed Findings

ID Title Severity Status

M-01 Array index mismatch causes
withdrawal processing panic

Medium Fixed in 1d84067

M-02 The OrcaDEXLiquidityPool pricing
source is vulnerable to price
manipulation

Medium Fixed in ae0d816

M-03 Incorrect assert in
set_supported_token_redelegating_
amount allows for wrong
redelegating amount setting

Medium Fixed in 54bc48c

M-04 Missing validation allows same token
swap strategy registration leading to
DoS

Medium Fixed in 5134c8e

L-01 Inconsistent command discriminants
and module file numbering

Low Fixed in 9f7054c

L-02 Users can lose rewards when
settlement blocks exceed maximum
capacity

Low Will not be fixed

L-03 Token swap strategies cannot be
updated or removed

Low Fixed in 5134c8e

L-04 Missing mint account validation for
distributing reward token

Low Fixed in 1d391ef

L-05 Missing account ownership
validation for vault operator
delegation

Low Fixed in e75b816

​ 6

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1d8406784c0ea39e1aae94eacd1f7e254d37a903
https://github.com/fragmetric-labs/fragmetric-contracts/commit/ae0d816d55af54462603aa13e7233e1e36237ef6
https://github.com/fragmetric-labs/fragmetric-contracts/commit/54bc48c28cf762cf193563666fe7e325acf76025
https://github.com/fragmetric-labs/fragmetric-contracts/commit/5134c8e2129cc5a72147d192203bca47696f72aa
https://github.com/fragmetric-labs/fragmetric-contracts/commit/9f7054c7df7f866836f28265bd463260b689008e
https://github.com/fragmetric-labs/fragmetric-contracts/commit/5134c8e2129cc5a72147d192203bca47696f72aa
https://github.com/fragmetric-labs/fragmetric-contracts/commit/1d391ef4d2b69e5fd63f0671020c54b0f5b2e84e#diff-de677ec170b72b6615ffe4d5291dd223b71bfccde51558378215430a9e8ff04d
https://github.com/fragmetric-labs/fragmetric-contracts/commit/e75b8165ed97bda61944eac882feccdd8214c05f

 ​ ​ ​ ​ ​ ​ ​

I-01 Undocumented magic values for
minimum operation thresholds

Informational Fixed in 1881a84

I-02 Unused command imports in
DenormalizeNT module

Informational Fixed in e75b816

I-03 Hardcoded seeds string should use
SPL library constant for extra
account metas

Informational Not fixed

I-04 Unused desired_account_size
parameter for
user_create_fund_account_idempo
tent

Informational Planned for next
release

I-05 Inconsistent event emission across
the codebase

Informational Will not be fixed

I-06 Unimplemented vault types create
silent failures

Informational Fixed in 1a4f22f

I-07 Insufficient vector capacity
reservation in
resolve_underlying_assets

Informational Planned for next
release

I-08 Redundant error handling in
ClaimUnstakedSOLCommand::execut
e_prepare

Informational Planned for next
release

I-09 Typos in variable and function names Informational Planned for next
release

​ 7

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1881a844b99f0728ca4e33dd669b3e5467db4761#diff-502e270d71637bef490629011b1d8ea88633e9464a692fb07e170fe5fa18792c
https://github.com/fragmetric-labs/fragmetric-contracts/commit/e75b8165ed97bda61944eac882feccdd8214c05f#diff-b52bbc8075d096e343340780960f7ee3ab46d2c00e5c1baeff3f966c59b3b890
https://github.com/fragmetric-labs/fragmetric-contracts/commit/1a4f22f32b80a89f4816176497d1fbbc74b8019e

 ​ ​ ​ ​ ​ ​ ​

Medium Severity Issues

M-01 Array index mismatch causes withdrawal processing panic

Severity: Medium Impact: High Likelihood: Unlikely

Files:
cmd6_process_withdrawal_batch.rs

Status: ​
Fixed in 1d84067

Description:
There is an issue in cmd6_process_withdrawal_batch.rs where the code incorrectly assumes
array indices match token iteration indices, leading to runtime panics when PeggedToken or
other skipped token types are present in the fund's token list.

At the very beginning, only specific token types increment the counter during Execute. For
example, PeggedToken returns without incrementing, while SPLStakePool increments it.

Later, the array is allocated with size equal to the count of specific token types only. Right after,
in #290 loop, it uses enumerate which provides indices for all tokens once again, while the array
contains only entries for the specific token types (let's assume SPLStakePool only). That means
that if there were some other not counted token types initially, for example [PeggedToken,
SPLStakePool, PeggedToken, SPLStakePool], the index will not be aligned to the array elements,
panicking when accessed.

Consequently, when there will be only two elements, accessing
supported_token_pricing_sources[3] will fail. As this will panic, the entire transaction will be
reverted, effectively preventing withdrawals.

Recommendations:
We recommend introducing a separate index variable that will track position within the filtered
array. ​

​ 8

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1d8406784c0ea39e1aae94eacd1f7e254d37a903

 ​ ​ ​ ​ ​ ​ ​

Customer response:

Fixed in commit 1d84067. For transparency: with today’s fund line‑up (fragSOL, fragJTO, fragBTC,

FRAG²) the problematic index pattern cannot occur, so user funds were not at risk.

Fix review:
The update correctly handles the issue. Account index i is only incremented for supported
tokens that use a pricing source account.​

​

M-02 The OrcaDEXLiquidityPool pricing source is vulnerable to price manipulation

Severity: Medium Impact: Critical Likelihood: Unlikely

Files:
orca_dex_liquidity_pool_value_provider.rs

Status: ​
Fixed in ae0d816.

Description:
The TokenPricingSource::OrcaDEXLiquidityPool implementation directly uses the pool's
sqrt_price for token price calculations without any manipulation resistance mechanisms. While
this vulnerability currently has limited impact due to the specific configuration of supported
tokens, as all tokens in affected pools like fragBTC and fragJTO use the same oracle through
pegged relationships, however it presents a security risk if the system evolves in the future.

Currently, pools like fragBTC maintain price stability through an invariant where all supported
assets (zBTC, cbBTC, wBTC) share the same price oracle - either directly (zBTC via
OrcaDEXLiquidityPool) or indirectly (cbBTC/wBTC via PeggedToken pointing to zBTC).

This creates a ratio that remains stable regardless of the volatile underlying price.

However, if any pool were to add a token with an independent pricing source (not pegged to the
pool's primary asset), this invariant would break. An attacker could then manipulate the Orca DEX
pool price to create arbitrage opportunities between the manipulated price and the true market
price of the newly added token.

​ 9

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1d8406784c0ea39e1aae94eacd1f7e254d37a903
https://github.com/fragmetric-labs/fragmetric-contracts/commit/ae0d816d55af54462603aa13e7233e1e36237ef6

 ​ ​ ​ ​ ​ ​ ​

Recommendations:
We recommend implementing a Time Weighted Average Price (TWAP) mechanism for
OrcaDEXLiquidityPool instead of direct sqrt_price, making price manipulation significantly more
expensive and difficult. Additionally, enforce strict on-chain validation to ensure only tokens with
the same pricing source or explicitly pegged tokens can be added to pools using
OrcaDEXLiquidityPool.
​
Customer response:
Fixed in commit ae0d816. The fix will assert that if an Orca DEX pricing source is registered, only
tokens pegged to that source may be added. TWAP alone is insufficient,
because even a thin, manipulated pool could still be exploited.

Fix review:
An extra check validate_new_supported_token_pricing_source is added to
process_add_supported_token. This check correctly ensures that OrcaDex pricing source can
only be set for the first token in a fund account with fund_account.sol.depositable disabled. If a
token with OrcaDex pricing source is set, only supported tokens with PeggedToken pricing
source can be added.​
This check ensures that when OrcaDex is used, only tokens with PeggedToken pricing can be
used. As any price manipulation would impact all tokens of the fund account vault equally, this
nullifies any price manipulation effects.​

​ 10

https://github.com/fragmetric-labs/fragmetric-contracts/commit/ae0d816d55af54462603aa13e7233e1e36237ef6

 ​ ​ ​ ​ ​ ​ ​

M-03 Incorrect assert in set_supported_token_redelegating_amount allows for
wrong redelegating amount setting

Severity: Medium Impact: Medium Likelihood: Likely

Files:
fund_account_restaking_vaults.rs

Status: ​
Fixed in 54bc48c

Description: ​
In the fund_account_restaking_vault.rs, the set_supported_token_redelegating_amount
function contains a critical logic error in its validation check. The function is responsible for
setting the amount of tokens to be redelegated from a restaking vault delegation. The current
implementation uses require_gte!(token_amount, self.supported_token_delegated_amount,
ErrorCode::FundInvalidConfigurationUpdateError), which enforces that the redelegating amount
must be greater than or equal to the currently delegated amount.

This is logically incorrect because it's impossible to redelegate more tokens than what is
currently delegated. The parameters in the require_gte! call are inverted.

This validation could lead to wrong delegating amount setting, causing fund accounting errors
and downstream calculation issues in other parts of the system that rely on the relationship
between delegated and redelegating amounts.

Recommendations: ​
The validation parameters should be swapped to ensure that the redelegating amount cannot
exceed the delegated amount.

Customer response:
Fixed in commit 54bc48c. The redelegation feature has been removed in the current release;
this code path no longer exists.​

​ 11

https://github.com/fragmetric-labs/fragmetric-contracts/commit/54bc48c28cf762cf193563666fe7e325acf76025
https://github.com/fragmetric-labs/fragmetric-contracts/commit/54bc48c28cf762cf193563666fe7e325acf76025

 ​ ​ ​ ​ ​ ​ ​

M-04 Missing validation allows same token swap strategy registration leading to
DoS

Severity: Medium Impact: Medium Likelihood: Unlikely

Files: fund_account.rs

Status: ​
Fixed in 5134c8e

Description: ​
The add_token_swap_strategy function in modules/fund/fund_account.rs lacks validation to
ensure that from_token_mint and to_token_mint are different tokens. Currently, the function
only checks if a swap strategy for the from_token_mint already exists and validates the
maximum number of strategies, but it does not prevent registering a swap strategy where the
source and destination tokens are identical.

This missing validation can lead to a Denial of Service (DoS) scenario. When an automated token
swap is attempted with identical source and destination tokens, the operation will fail at the
system program level, disrupting the normal operation of the fund.

Recommendations: ​
We recommend adding a validation check in the add_token_swap_strategy function to ensure
that from_token_mint and to_token_mint are not equal before initializing the token swap
strategy. This can be implemented by adding a require_keys_neq! check or similar validation
after the existing checks and before the strategy initialization.

Customer response:
Fixed in commit 5134c8e. Now it rejects identical from_mint ↔ to_mint pairs and validates the
underlying Orca pool.

​ 12

https://github.com/fragmetric-labs/fragmetric-contracts/commit/5134c8e2129cc5a72147d192203bca47696f72aa
https://github.com/fragmetric-labs/fragmetric-contracts/commit/5134c8e2129cc5a72147d192203bca47696f72aa

 ​ ​ ​ ​ ​ ​ ​

Low Severity Issues

L-01 Inconsistent command discriminants and module file numbering

Severity: Low Impact: Low Likelihood: Likely

Files: mod.rs​

Status: ​
Fixed in 9f7054c

Description: ​
There is an inconsistency in module/fund/commands/mod.rs where the discriminant values
assigned to commands do not match their module file naming convention. The discriminant
function assigns OperationCommand::StakeSOL(_) => 10 and
OperationCommand::HarvestReward(_) => 11, while the module files are named
cmd10_harvest_reward.rs and cmd11_stake_sol.rs, suggesting the opposite assignment.

This mismatch does not cause functional issues because serialization and deserialization remain
internally consistent - both operations use the same discriminant function. When
HarvestRewardCommand is serialized with discriminant 11 and later deserialized, the verification
check compares the stored discriminant (11) with the command's discriminant (11), allowing
successful deserialization.

The execution flow is determined by what each command returns in its execute function, not by
discriminants or file names. For instance, HarvestRewardCommand transitions to
StakeSOLCommand regardless of their discriminant values. While this inconsistency does not
impact protocol functionality, it could lead to developer errors if someone assumes file numbers
correspond to discriminant values when adding new commands or debugging the protocol code.

Recommendations: ​
We recommend aligning the discriminant values with the module file names by updating the
discriminant function to assign OperationCommand::StakeSOL(_) => 11 and
OperationCommand::HarvestReward(_) => 10, or alternatively renaming the files to match the
current discriminant assignment.

​ 13

https://github.com/fragmetric-labs/fragmetric-contracts/commit/9f7054c7df7f866836f28265bd463260b689008e

 ​ ​ ​ ​ ​ ​ ​

Customer response: ​
Fixed in commit 9f7054c

L-02 Users can lose rewards when settlement blocks exceed maximum capacity

Severity: Low Impact: Medium Likelihood: Unlikely

Files:
user_reward_settlement.rs​

Status: ​
Will not be fixed

Description: ​
The reward settlement system maintains a maximum of 64 settlement blocks per reward
account. When this limit is reached and new blocks need to be added, the
force_clear_settlement_block function removes the oldest block and transfers its remaining
amount to reward_settlement.remaining_amount.

However, if a user does not call user_update_reward_pools for an extended period (during which
more than 64 new settlement blocks are created), they will permanently lose access to rewards
from the removed blocks. The issue occurs because:

1.​ When processing missed blocks during user_update_reward_pools, the contribution is
added to total_settled_contribution but not to total_settled_amount

2.​ The claim function only uses total_settled_amount to determine claimable rewards
3.​ Rewards from force-cleared blocks become inaccessible to users who haven't updated in

time

This creates a scenario where active reward distribution can inadvertently penalize inactive users
by making their accrued rewards unclaimable if they don't update within the 64-block window.

Given the current on-chain data shows only 5 blocks maximum being used per settlement, the
severity of the issue was reduced, but it should be addressed to prevent potential future reward
losses as the protocol scales.

​ 14

https://github.com/fragmetric-labs/fragmetric-contracts/commit/9f7054c7df7f866836f28265bd463260b689008e

 ​ ​ ​ ​ ​ ​ ​

Recommendations: ​
Implement a mechanism to preserve user rewards even when settlement blocks are
force-cleared.

Customer response: ​
Will not be fixed. We need to limit the storage and believe this should be handled as a matter of
operation policy. We will document the 64‑block cap and enforce periodic settlement in the
fund‑operation policy. At weekly settlements, the cap covers ≈1–2 years of history, which we
deem sufficient.​

L-03 Token swap strategies cannot be updated or removed

Severity: Low Impact: Medium Likelihood: Unlikely

Files: fund_account.rs​

Status: ​
Fixed in 5134c8e

Description: ​
There is a functional limitation in the token swap strategy management where the
fund_manager_add_token_swap_strategy function only supports adding new strategies without
providing mechanisms to update or remove existing ones. Once a token swap strategy is added
to a fund, it becomes permanent and cannot be modified or deleted.

This one way operation creates operational challenges. If a swap strategy is configured
incorrectly, it cannot be corrected. Also, if a DEX pool becomes deprecated or malicious, the
strategy cannot be removed, and if swap parameters need adjustment due to market conditions,
no update mechanism exists.

Additionally, this design pattern contradicts standard administrative practices where
configuration parameters can typically be updated or removed by authorized parties to maintain
system health and adapt to changing requirements.

​ 15

https://github.com/fragmetric-labs/fragmetric-contracts/commit/5134c8e2129cc5a72147d192203bca47696f72aa

 ​ ​ ​ ​ ​ ​ ​

It is worth mentioning that the maximum number of existing strategies, defined as
FUND_ACCOUNT_MAX_TOKEN_SWAP_STRATEGIES, is 30. When reached, no new strategies
could be added.

Recommendations: ​
We recommend reconsidering implementation of complementary functions to manage swap
strategies. These functions should validate that no pending operations depend on the strategy
being modified or removed.

Customer response: ​
Fixed in commit 5134c8e. fund_manager_remove_token_swap_strategy has been added. The
30‑strategy cap aligns with the reward‑account size limit.

L-04 Missing mint account validation for distributing reward token

Severity: Low Impact: Low Likelihood: Unlikely

Files:
fund_configuration_service.rs

Status: ​
Fixed in 1d391ef

Description: ​
There is a missing account type validation in
fund_manager_add_restaking_vault_distributing_reward_token where the function accepts
distributing_reward_token_mint without verifying it is actually a valid mint account. The function
allows any account to be registered as a reward token mint without checking that the account
contains valid mint data or is owned by the token program.

This validation gap means a fund manager could accidentally or intentionally register a non-mint
account, such as a token account, system account, or arbitrary data account, as a reward token.
When the protocol later attempts to distribute rewards using this registered "mint", operations
will fail because the account lacks the expected mint structure.

This would break reward distribution for the affected vault, locking accumulated rewards and
disrupting the expected reward flow to users. The issue is particularly problematic because the

​ 16

https://github.com/fragmetric-labs/fragmetric-contracts/commit/5134c8e2129cc5a72147d192203bca47696f72aa
https://github.com/fragmetric-labs/fragmetric-contracts/commit/1d391ef4d2b69e5fd63f0671020c54b0f5b2e84e#diff-de677ec170b72b6615ffe4d5291dd223b71bfccde51558378215430a9e8ff04d

 ​ ​ ​ ​ ​ ​ ​

error would only show up during reward distribution, not at configuration time. By then, the vault
may have accumulated significant rewards that become unclaimable due to the invalid mint
configuration.

Recommendations: ​
We recommend adding validation to verify the account is a valid mint by attempting to
deserialize it as InterfaceAccount<Mint> or checking that the account owner is either
anchor_spl::token::ID or anchor_spl::token_2022::ID. This validation should occur before storing
the mint address in the vault's configuration.

Customer response: ​
Fixed in commit 1d391ef

L-05 Missing account ownership validation for vault operator delegation

Severity: Low Impact: Low Likelihood: Unlikely

Files:
jito_restaking_vault_service.rs​

Status: ​
Fixed in e75b816

Description: ​
There is a missing account ownership validation in
modules/restaking/jito_restaking_vault_service.rs where the vault operator delegation account
is not verified to be owned by the Jito vault program before being used. The validation function
accepts delegation accounts without confirming they are owned by the expected Jito program.

This allows an attacker to create a spoofed account with an identical data layout but owned by a
different program, manipulating delegation states or amounts that the system trusts. While the
risk is reduced because this function is only callable by the fund manager (a trusted role), the
lack of ownership verification violates Solana's security best practices.

Even trusted callers should not be able to pass accounts owned by incorrect programs, as this
could lead to state corruption or enable attack vectors if the trust model changes in the future.

​ 17

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1d391ef4d2b69e5fd63f0671020c54b0f5b2e84e#diff-de677ec170b72b6615ffe4d5291dd223b71bfccde51558378215430a9e8ff04d
https://github.com/fragmetric-labs/fragmetric-contracts/commit/e75b8165ed97bda61944eac882feccdd8214c05f

 ​ ​ ​ ​ ​ ​ ​

Recommendations: ​
We recommend adding an ownership check to verify that the vault_operator_delegation
account is owned by the expected Jito vault program before processing its data. This should be
implemented using require_keys_eq!(vault_operator_delegation.owner,
expected_jito_program_id) or similar validation pattern used elsewhere in the codebase.

Customer response: ​
Fixed in commit e75b816. Deserialization now asserts that the account is owned by the Jito vault
program, regardless of account type.

​ 18

https://github.com/fragmetric-labs/fragmetric-contracts/commit/e75b8165ed97bda61944eac882feccdd8214c05f

 ​ ​ ​ ​ ​ ​ ​

Informational Severity Issues

I-01. Undocumented magic values for minimum operation thresholds

Description: ​
There are undocumented magic values in cmd7_unstake_lst.rs, cmd11_stake_sol.rs and
cmd13_restake_vst.rs where threshold checks use hardcoded numbers without explanation of
their purpose or origin.

In cmd13_restake_vst.rs, the code checks if allocated_token_amount >= 1_000_000 before
adding items to the restaking list. Similarly, in cmd11_stake_sol.rs, the threshold if
allocated_sol_amount >= 1_000_000_000 is used to filter staking operations. The same pattern
appears in cmd7_unstake_lst.rs with if allocated_token_amount >= 1_000_000.

These values appear to represent minimum amounts for operations - the 1_000_000_000 value
equals 1 SOL (since 1 SOL = 10^9 lamports), suggesting it's a minimum SOL staking threshold. The
1_000_000 value likely represents a minimum token amount in the smallest unit, possibly to
avoid dust transactions.

Without documentation, this makes it difficult to assess whether the values need adjustment
when integrating new tokens with different decimals or when protocol requirements change. The
lack of clarity also prevents proper validation of whether these thresholds are appropriate for all
token types, particularly when different tokens may have vastly different decimal configurations.

Recommendations: ​
We recommend defining these values as named constants with clear documentation explaining
their purpose.

Customer response:
Fixed in commit 1881a84

​ 19

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1881a844b99f0728ca4e33dd669b3e5467db4761#diff-502e270d71637bef490629011b1d8ea88633e9464a692fb07e170fe5fa18792c

 ​ ​ ​ ​ ​ ​ ​

I-02. Unused command imports in DenormalizeNT module

Description: ​
There are unused imports in modules/fund/commands/cmd4_denormalize_nt.rs where the code
imports specific OperationCommand variants that are never referenced in the file's
implementation.

The import statement use
crate::modules::fund::commands::OperationCommand::{ClaimUnstakedSOL, UndelegateVST};
brings in two command types that are not utilized anywhere in the DenormalizeNTCommand
logic.

This unused import does not affect the functionality or security of the contract, as Rust's
compiler optimizes away unused code. The presence of unused imports can mask actual
dependencies and make it harder to track which modules truly depend on which commands.

Recommendations: ​
We recommend removing the unused import statement for ClaimUnstakedSOL and
UndelegateVST from the file, keeping only the imports that are actually utilized in the
implementation.

Customer response: ​
Fixed in commit e75b816

​ 20

https://github.com/fragmetric-labs/fragmetric-contracts/commit/e75b8165ed97bda61944eac882feccdd8214c05f#diff-b52bbc8075d096e343340780960f7ee3ab46d2c00e5c1baeff3f966c59b3b890

 ​ ​ ​ ​ ​ ​ ​

I-03. Hardcoded seeds string should use SPL library constant for extra account metas

Description: ​
The extra_account_meta_list account uses hardcoded seed strings b"extra-account-metas" in
three different contexts across the codebase:

-​ AdminReceiptTokenMintExtraAccountMetaListInitialContext
-​ AdminReceiptTokenMintExtraAccountMetaListUpdateContext
-​ UserReceiptTokenTransferContext

Each occurrence directly uses the inline string literal instead of leveraging the existing constant
EXTRA_ACCOUNT_METAS_SEED from the SPL Transfer Hook Interface library. This approach
reduces code maintainability and increases the risk of typos or inconsistencies if the seed value
needs to be modified in the future.

Recommendations: ​
Replace all hardcoded b"extra-account-metas" seed strings with the
EXTRA_ACCOUNT_METAS_SEED constant from the SPL library. Import the constant at the
beginning of the relevant files and update all account declarations to use it.

​ 21

 ​ ​ ​ ​ ​ ​ ​

I-04. Unused desired_account_size parameter for user_create_fund_account_idempotent

Description: ​
The user_create_fund_account_idempotent function accepts a desired_account_size
parameter that is not utilized in the implementation. The parameter is passed through to
UserFundConfigurationService::process_create_user_fund_account_idempotent, where it is
prefixed with an underscore (_desired_account_size) and marked with a comment "// reserved",
indicating it is intentionally unused.

This creates confusion for API consumers who may expect this parameter to influence the
account size allocation, when in reality it has no effect on the function's behavior. The function
always initializes accounts with a fixed size of 8 + UserFundAccount::INIT_SPACE, regardless of
the provided parameter value.

Recommendations: ​
Either remove the unused parameter from the public API to avoid confusion, or properly
document its reserved status for future use.

Customer response: ​
Seems like the parameter can be deprecated; It will be removed in the next minor release.

​ 22

 ​ ​ ​ ​ ​ ​ ​

I-05. Inconsistent event emission across the codebase

Description: ​
The codebase implements inconsistent event emission patterns across different instruction
types, particularly for privileged operations. Analysis reveals that fund manager instructions lack
event emission except for fund_manager_add_normalized_token_pool_supported_token and
fund_manager_remove_normalized_token_pool_supported_token. Similarly, among admin
instructions, only admin_create_user_reward_account_idempotent emits events, while critical
administrative operations like admin_initialize_fund_account,
admin_update_fund_account_if_needed, admin_initialize_reward_account, and
admin_update_reward_account_if_needed do not emit any events.

This is problematic, as such approach might be problematic for frontend applications, monitoring
systems, and data aggregators that rely on events to track state changes and user interactions.
The absence of events for privileged operations is particularly problematic as these actions
often involve critical configuration changes that external systems need to monitor for security,
compliance, and user experience purposes.

Recommendations: ​
We recommend adding event emission to all instructions, especially admin and fund manager
operations. Each event should include the action taken, accounts involved, and any state
changes. This will help frontends and monitoring tools track what's happening in the system.
Consider using a consistent event format for similar operations to make integration easier.

Customer response: ​
Design rationale: admin instructions merely initialize structures; activation requires fund‑manager
calls, which do emit events. Normalized‑token‑pool ops are internal. We will document this
behaviour.

​ 23

 ​ ​ ​ ​ ​ ​ ​

I-06. Unimplemented vault types create silent failures

Description: ​
There are multiple unimplemented vault type handlers across
modules/fund/commands/cmd1_initialize.rs, modules/restaking/mod.rs,
modules/fund/commands/cmd13_restake_vst.rs, and
modules/fund/commands/cmd14_delegate_vst.rs where SolvBTCVault and other vault types
have placeholder implementations that skip actual functionality. Throughout these files, match
statements handle various TokenPricingSource variants, but SolvBTCVault consistently returns
empty results or skips to the next item without performing any operations.

For example, in restaking operations, the code simply continues to the next vault when
encountering SolvBTCVault rather than executing restaking logic. This creates a silent failure
mode where operations involving these vault types appear to succeed but perform no actual
work. Users might add SolvBTC vaults expecting them to participate in restaking, delegation, or
initialization operations, but these vaults remain inactive without any error indication.

This incomplete implementation is particularly problematic because the code compiles and runs
without errors, giving no indication that these vault types are non-functional.

Recommendations: ​
We recommend either completing the implementation for SolvBTCVault and other TODO-marked
vault types, or explicitly returning errors when these types are encountered to prevent silent
failures. If these implementations are planned for future releases, add clear error messages
indicating the feature is not yet available rather than silently skipping the logic.

Customer response: ​
SolvBTC vault integration has been added in commit 1a4f22f

​ 24

https://github.com/fragmetric-labs/fragmetric-contracts/commit/1a4f22f32b80a89f4816176497d1fbbc74b8019e

 ​ ​ ​ ​ ​ ​ ​

I-07. Insufficient vector capacity reservation in resolve_underlying_assets

Description:
In the fund_receipt_token_value_provider.rs file, the resolve_underlying_assets method
reserves insufficient capacity for the numerator vector, causing unnecessary memory
reallocation.

The code currently reserves exactly TokenValue::MAX_NUMERATOR_SIZE (33) items. However,
the subsequent code can potentially add up to 34 items:

●​ 1 SOL asset
●​ Up to 16 supported tokens (FUND_ACCOUNT_MAX_SUPPORTED_TOKENS = 16)
●​ Up to 1 normalized token
●​ Up to 16 restaking vaults (FUND_ACCOUNT_MAX_RESTAKING_VAULTS = 16)

When all asset types are present (1 + 16 + 1 + 16 = 34), pushing the 34th item will trigger a vector
reallocation, doubling the capacity to 66 items. This results in unnecessary memory allocation
and data copying operations.

Recommendations:
Update the TokenValue::MAX_NUMERATOR_SIZE constant to 34 to match the actual maximum
number of assets that can be added. Alternatively, calculate the exact capacity needed
dynamically based on the fund account's configuration.

Customer response: ​
This will be fixed in a next release

​ 25

 ​ ​ ​ ​ ​ ​ ​

I-08. Redundant error handling in ClaimUnstakedSOLCommand::execute_prepare

Description:
In the execute_prepare function of ClaimUnstakedSOLCommand, there are duplicate error
checks for token pricing sources that create unreachable code. The first match statement at line
199 already errors out for any pricing source that isn't SPLStakePool, MarinadeStakePool,
SanctumSingleValidatorSPLStakePool, or SanctumMultiValidatorSPLStakePool.

This means the second match statement at line 263 will only ever receive one of these four valid
pricing sources, making its error arms for JitoRestakingVault, FragmetricNormalizedTokenPool,
and other variants unreachable dead code.

Recommendations: ​
Remove the redundant error handling in the second match statement since these cases are
already handled by the first match. The second match can be simplified to only handle the four
valid pricing source types without error arms, improving code clarity and eliminating dead code.

Customer response:
This will be fixed in a next release

​ 26

 ​ ​ ​ ​ ​ ​ ​

I-09. Typos in variable and function names

Description:
Throughout the PricingService implementation, there is a consistent typo where "micro" is
misspelled as "mirco" in several key identifiers. Specifically, the token_value_as_mirco_lamports
field and the get_token_value_as_mirco_lamports function both contain this typo.

This is particularly confusing because the code correctly uses "micro" in local variable names like
micro_lamports, to_micro_token, and from_micro_lamports, creating an inconsistent naming
convention within the same module. While this doesn't affect functionality, it impacts code
readability and could lead to confusion for developers working with the codebase.

Recommendations: ​
Refactor all instances of "mirco" to "micro" for consistency, including renaming
token_value_as_mirco_lamports to token_value_as_micro_lamports and
get_token_value_as_mirco_lamports to get_token_value_as_micro_lamports.

Customer response: ​
This will be fixed in a next release

​ 27

 ​ ​ ​ ​ ​ ​ ​

Disclaimer

Even though we hope this information is helpful, we provide no warranty of any kind, explicit or
implied. The contents of this report should not be construed as a complete guarantee that the
contract is secure in all dimensions. In no event shall Certora or any of its employees be liable for
any claim, damages, or other liability, whether in an action of contract, tort, or otherwise, arising
from, out of, or in connection with the results reported here.

About Certora

Certora is a Web3 security company that provides industry-leading formal verification tools and
smart contract audits. Certora’s flagship security product, Certora Prover, is a unique SaaS
product that automatically locates even the most rare & hard-to-find bugs on your smart
contracts or mathematically proves their absence. The Certora Prover plugs into your standard
deployment pipeline. It is helpful for smart contract developers and security researchers during
auditing and bug bounties.

Certora also provides services such as auditing, formal verification projects, and incident
response.

​ 28

	​
	Security Assessment
	Final Report
	Project Summary
	Project Scope
	Project Overview
	Protocol Overview

	
	Findings Summary
	Severity Matrix

	Detailed Findings
	
	Medium Severity Issues
	M-01 Array index mismatch causes withdrawal processing panic
	M-02 The OrcaDEXLiquidityPool pricing source is vulnerable to price manipulation
	M-03 Incorrect assert in set_supported_token_redelegating_amount allows for wrong redelegating amount setting
	M-04 Missing validation allows same token swap strategy registration leading to DoS
	Low Severity Issues
	L-01 Inconsistent command discriminants and module file numbering
	L-02 Users can lose rewards when settlement blocks exceed maximum capacity
	L-03 Token swap strategies cannot be updated or removed
	L-04 Missing mint account validation for distributing reward token
	L-05 Missing account ownership validation for vault operator delegation
	
	Informational Severity Issues
	I-01. Undocumented magic values for minimum operation thresholds
	I-02. Unused command imports in DenormalizeNT module

	
	I-03. Hardcoded seeds string should use SPL library constant for extra account metas
	I-04. Unused desired_account_size parameter for user_create_fund_account_idempotent
	I-05. Inconsistent event emission across the codebase
	I-06. Unimplemented vault types create silent failures
	I-07. Insufficient vector capacity reservation in resolve_underlying_assets
	I-08. Redundant error handling in ClaimUnstakedSOLCommand::execute_prepare
	
	I-09. Typos in variable and function names

	
	
	Disclaimer
	
	
	About Certora

